
Architecture

Group 18

Team B

Olivia Betts
Zac Bhumgara

Nursyarmila Ahmad Shukri
Cameron Duncan-Johal

Muaz Waqas
Oliver Northwood

Teddy Seddon



Diagrams

We have used Unified Modelling Language (UML) to model the structure and
behaviour of our software system. UML diagrams can be used to illustrate our project before
it begins or as project documentation once it has begun. To create the diagrams, we have
used an UML extension on Google which is PlantUML Gizmo. Diagrams can be generated
from plain text using the open-source tool PlantUML. Some of the diagrams have been split,
to make them more readable. The full UML is available on our website.

Structural diagrams:



Behavioural diagrams:

https://www.plantuml.com/plantuml/img/oq_AIaqkKN0kBIx9pqqjuig7ylDByqg0N2wOX8ALGaacI06IG7vH2gf0SZvGg1Ye2Q8RA5AKcfnPa5gCP8wkResT0aA1Rs9U9SIWOeN44WL30000
https://www.plantuml.com/plantuml/img/DOmx3i8m44HxdsAKFWKj1GqLnp3E8g_m9zfTWoAKkyT6qCoyuiteaylgnMUeRObw2WThERd82o6JnRge2ychuXhfyN40bnSLgx9r3hLA5u3Iyfsam_wtQoj6CWOIU2LrkniFc4uJvc_-b3DketmmdTzi4PS3
https://www.plantuml.com/plantuml/img/DSux3eCm30RWFQUms1cwCdHXhYgr9qY3AwpcGUq42I7kNeT21iUolloEV2XEbcq0oOj7hKmkb-3DI0D2m3ocGOppLWJw4T-h0Q0uOyo95-rTIgm089RmGjPcC-Rm3tGq8TGdqGRKY_5RY75eWyt8PBsOxTHzaPm2SkMQkMTbqa4bfkw6vj90kzSJT_14db6kAeuHD3SRbnF-_z31lIPMfkS7


Development Over Time

The first thing to consider in our architecture planning phase was the overall layout of the
game. We knew that we needed to make a game which has different entities in different
classes, and makes use of object-oriented techniques, such as inheritance. For this reason,
we created different classes such as a ‘cook’ class, a ‘customer’ class and a ‘cooking station’
class. The ‘cooking station’ class made use of inheritance and three subclasses (‘cutting
station’, ‘frying station’ and ‘serving station’) were the child classes, which all had the same
methods as the parent ‘cooking station’ class. We created some initial diagrams to help
illustrate the layout of the classes and how they would link together; and some CRC cards
were also made to show the different kinds of classes which we had, what their respective
responsibilities were and how these responsibilities linked between classes. At this point our
architecture was very basic and not fully linked to our requirements. The CRC cards can be
found on our website.

Initial diagrams:

Once the user requirements were complete, then we began to link our architecture more
specifically to the user requirements. In particular, we made use of the functional system
requirements, which would explain how the game itself works.

From the start, we had a top-down approach to the design of the architecture. We started by
breaking down the functionality of the product into small classes, such as recipe, ingredients,
and pantry. However, as we progressed with the development of the product, we realised
that this approach led to a lot of duplicated code and increased complexity. As the problem
had been over-simplified, we decided to scale back and refactor the architecture. For the
example mentioned before, all the oversimplified classes were made into a single class
called pantry which inherited information from all the other small classes. This approach
simplified the architecture and made it more maintainable.

Alongside the implementation of the project, we started developing a final representation of
the software architecture. This would be composed of a UML structural diagram,
representing the different entities and their relationships in the game. In this document we
have justified how the different entities within the diagram relate to the requirements.



To do this, we used the UML Maker tool provided by IntelliJ Idea. This was useful as it
allowed us to automatically create the proper layout for the UML, complete with all the
entities. After some editing to the diagram, the diagram created a link between the
requirements and the implementation.

During the implementation of the project, we created some new classes to make coding the
game easier. For example, we created a MyScreen abstract class which extends into the
separate PantryScreen and the StationScreens. This was useful because it meant that the
child classes inherited all of those characteristics from MyScreen. Along with that, we
created a new HudButton class to allow functionality on the separate screens.

Towards the end of the implementation, we added these into our UML diagrams.

Linking Architecture and Requirements in full:

MainMenuScreen: this is where FR_GAMEMODES is fulfilled. The main menu screen
allows the user to switch between two game modes, scenario and endless mode (although
the endless mode button is absent as that was not a requirement for Assessment 1). This
class was not originally in our designs, so we added it to the final architectural model.

PlayScreen: this is where FR_CONTROLS is fulfilled. The functionality allows the cook to
move around the kitchen using the arrow keys. FR_CUSTOMERS is also fulfilled as the
customers are also created and rendered in this class.

MyScreen: this is an abstract class which is the parent class of the following classes -
PantryScreen, CuttingScreen, FryingScreen and ServingScreen. It fulfils FR_PREPARE
as it takes the player to a separate screen, where they can then take the steps to prepare
the dish.

WorldContactListener: we needed a method to actually be able to detect when the cook
collides with the Interactive Objects. This is done with this class. This helps to fulfil the
FR_RECIPES and FR_PREPARE as it allows the cook to go into those separate screens to
try to create the dish.

InteractiveTileObject: Fulfils the same requirements as above. Rendering objects on the
map as InteractiveTileObjects allowed the WorldContactListener to detect collisions.

Pantry, CuttingStation, FryingStation, ServingStation: these are all child classes of
InteractiveTileObject. Again they fulfil the same requirements.

Buns, Lettuce, Onion, Patty, Tomato, Knife, Pan, Plate: these are also child classes of
InteractiveTileObject. Again they fulfil FR_PREPARE only, as they allow the actual
ingredient to be chopped, fried or served.

Hud, HudButton: these two classes allow for navigation between the screens and a timer
and reputation points. They fulfil FR_REPUTATION_POINTS. We also realised that the time
taken to complete the scenario should be displayed. For this reason we added a timer
method to the customer class.



Cook: this class is meant to fulfil FR_MULTI_COOKS and FR_COLLISION. We were
unable to implement these in the actual game. It also fulfils FR_ITEM_INTERACTION which
we implemented, but did not include the upper limit.

Customer: this class helps to implement FR_CUSTOMERS and it is a child class of NPC.

B2WorldCreator: this class creates all the objects on our game map. Therefore it is crucial
for the entire running of the game. It helps to fulfil FR_RECIPES and FR_PREPARE.

Bearing all these requirements in mind, we made noticeable changes to the architecture of
our game. The most evident of these was the addition of new classes to represent the
different screens which we will have. We decided we needed a main menu screen, which will
have a button to start the scenario mode. After starting the game, the game screen would be
loaded in, which is a 2d view of a kitchen, containing cooks, a counter, a pantry, and the
cooking stations.

There are some requirements which we have not implemented as of this moment. These are
all requirements which we plan to implement in our next project, and include
FR_FAIL_STEP, FR_INVEST, FR_REPUTATION_POINTS, FR_DIFF_INCREASE and
endless mode.

Some of our final UML is pictured below. Due to the increase in size of the project, PlantUML
was unable to fully render it, which was a drawback we hadn’t considered when choosing
the program in the beginning.


